Symmetric and Antisymmetric Solar Migrating Semidiurnal Tides in the Mesosphere and Lower Thermosphere

Author:

Yamazaki Y.1ORCID,Siddiqui T. A.1ORCID

Affiliation:

1. Leibniz Institute of Atmospheric Physics at the University of Rostock Kühlungsborn Germany

Abstract

AbstractUpward‐propagating solar tides are responsible for a large part of atmospheric variability in the mesosphere and lower thermosphere (MLT) region, and they are also an important source of ionospheric variability. Tides can be divided into the parts that are symmetric and antisymmetric about the equator. Their distinction is important, as the electrodynamic responses of the ionosphere to symmetric and antisymmetric tides are different. This study examines symmetric and antisymmetric tides using 21 years of temperature measurements by the Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry. The main focus is on the solar migrating semidiurnal tide (SW2), which is one of the dominant tides in the MLT region. It is shown that symmetric and antisymmetric parts of SW2 are comparable in amplitude. However, their spatiotemporal characteristics are different. That is, the symmetric part is strongest during March–June at 30–35° latitude, while the antisymmetric part is most prominent during May–September with the largest amplitude at 15–20° latitude. The symmetric and antisymmetric parts can be well described by the first two symmetric and antisymmetric Hough modes, respectively. Amplification is observed in the antisymmetric part during the major sudden stratospheric warmings (SSWs) in January 2006, 2009, 2013 and 2019. Atmospheric model simulations for the 2009 and 2019 SSWs confirm the amplification in the antisymmetric part of SW2. The enhanced antisymmetric tidal forcing explains the previously‐reported asymmetric response of the ionospheric solar‐quiet current system to SSWs.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3