Dinitrogen Emissions Dominate Nitrogen Gas Emissions From Soils With Low Oxygen Availability in a Moist Tropical Forest

Author:

Almaraz Maya12ORCID,Groffman Peter M.23,Silver Whendee L.4ORCID,Hall Steven J.5ORCID,Lin Yang46ORCID,O’Connell Christine7ORCID,Porder Stephen8

Affiliation:

1. High Meadows Environmental Institute Princeton University Princeton NJ USA

2. Cary Institute of Ecosystem Studies Millbrook NY USA

3. Advanced Science Research Center at the Graduate Center City University of New York New York NY USA

4. Department of Environmental Science, Policy and Management University of California Berkeley CA USA

5. Department of Ecology, Evolution and Organismal Biology Iowa State University Ames IA USA

6. Department of Soil and Water Sciences University of Florida Gainesville FL USA

7. Department of International Development Macalester University Saint Paul MN USA

8. Department of Ecology and Evolutionary Biology Brown University Providence RI USA

Abstract

AbstractLowland tropical forest soils are relatively N rich and are the largest global source of N2O (a powerful greenhouse gas) to the atmosphere. Despite the importance of tropical N cycling, there have been few direct measurements of N2 (an inert gas that can serve as an alternate fate for N2O) in tropical soils, limiting our ability to characterize N budgets, manage soils to reduce N2O production, or predict the future role that N limitation to primary productivity will play in buffering against climate change. We collected soils from across macro‐ and micro‐topographic gradients that have previously been shown to differ in O2 availability and trace gas emissions. We then incubated these soils under oxic and anoxic headspaces to explore the relative effect of soil location versus transient redox conditions. No matter where the soils came from, or what headspace O2 was used in the incubation, N2 emissions dominated the flux of N gas losses. In the macrotopography plots, production of N2 and N2O were higher in low O2 valleys than on more aerated ridges and slopes. In the microtopography plots, N2 emissions from plots with lower mean soil O2 (5%–10%) were greater than in plots with higher mean soil O2 (10%–20%). We estimate an N gas flux of ∼37 kg N/ha/yr from this forest, 99% as N2. These results suggest that N2 fluxes may have been systematically underestimated in these landscapes, and that the measurements we present call for a reevaluation of the N budgets in lowland tropical forest ecosystems.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3