Methane Producing and Oxidizing Microorganisms Display a High Resilience to Drought in a Swedish Hemi‐Boreal Mire

Author:

White J. D.1ORCID,Ahrén D.2,Ström L.1,Kelly J.3ORCID,Klemedtsson L.4ORCID,Keane B.5,Parmentier F. J. W.16ORCID

Affiliation:

1. Department of Physical Geography and Ecosystem Science Lund University Lund Sweden

2. National Bioinformatics Infrastructure Sweden (NBIS) Department of Biology Lund University Lund Sweden

3. Centre for Environmental and Climate Science Lund University Lund Sweden

4. Department of Earth Sciences University of Gothenburg Gothenburg Sweden

5. Department of Animal and Plant Sciences The University of Sheffield Sheffield UK

6. Centre for Biogeochemistry in the Anthropocene Department of Geosciences University of Oslo Oslo Norway

Abstract

AbstractAn increased frequency of droughts due to anthropogenic climate change can lead to considerable stress for soil microorganisms and their functioning within northern peatlands. A better understanding of the diversity and relative abundance of methane producing and oxidizing taxa, and their functional genes, can help predict the functional potential of peatlands and how the microorganisms respond to disturbances such as drought. To address knowledge gaps in the understanding of how functional genetic diversity shifts under drought conditions, we investigated a hemi boreal mire in Southern Sweden. Environmental parameters, including soil and air temperature, precipitation, and water table depth, as well as methane flux data were collected during the summer of 2017 under typical growing conditions, and in 2018 during a drought. In addition, the diversity and composition of genes encoding for methane metabolism were determined using the captured metagenomics technique. During drought we observed a substantial increase in air and soil temperature, reduced precipitation, and a lower water table depth. Taxonomic and functional gene composition significantly changed during the drought, while diversity indices, such as alpha and beta diversity, remained similar. These results indicate that methane producing and oxidizing microbial communities, and their functional genes, displayed a resilience to drought with specific genera having the ability to outcompete others under stress. Furthermore, our results show that although methane emissions are substantially reduced during drought, we can expect to see a shift toward more resilient methanogens and methanotrophs under future climate conditions.

Funder

Svenska Forskningsrådet Formas

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3