Effects of Snow Cover on Spring Vegetation Phenology Vary With Temperature Gradient Across the Pan‐Arctic

Author:

Wu Youlv1ORCID,Xiao Pengfeng12ORCID,Zhang Xueliang1ORCID,Liu Hao1ORCID,Dong Yuanbiao1,Feng Lian3ORCID

Affiliation:

1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources School of Geography and Ocean Science Nanjing University Nanjing China

2. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application Nanjing China

3. School of Environmental Science and Engineering Southern University of Science and Technology Shenzhen China

Abstract

AbstractExtensive and complex changes in spring vegetation phenology have occurred in the Pan‐Arctic over the last several decades. However, the role of snow cover at the start of the growing season (SOS) under different climatic conditions remains unclear. Therefore, we compare the effects of four snow indicators on SOS from 1982 to 2015 based on long‐term remote sensing data and found that snow cover end date (SCED) is the main snow indicator affecting SOS, with SOS advancing 0.56 days for each 1‐day advance in SCED, explaining 12%–90% of SOS variability in 63% of the Pan‐Arctic region. The results also demonstrate that SCED is the dominant factor on SOS in 13% of the Pan‐Arctic region and the effects of SCED on SOS vary with temperature gradient rather than precipitation gradient. In cold areas, the positive effect of SCED on SOS diminished with increasing temperature, while in warm areas, the positive effect of SCED on SOS increased with increasing temperature. As the climate warms, the impact of SCED on SOS is expected to weaken in cold areas and increase in warm areas. The findings have crucial implications for understanding future vegetation phenological responses to climate change across the Pan‐Arctic.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3