Improved Vegetation Photosynthetic Phenology Monitoring in the Northern Ecosystems Using Total Canopy Solar‐Induced Chlorophyll Fluorescence Derived From TROPOMI

Author:

Liu Haoran1ORCID,Liu Junzhi2ORCID,Yin Yueqiang3,Walther Sophia4ORCID,Ma Xuanlong5ORCID,Zhang Zhaoying6,Chen Yuhan7

Affiliation:

1. Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA

2. Center for the Pan‐Third Pole Environment Lanzhou University Lanzhou China

3. Provincial Geomatics Centre of Jiangsu Nanjing Jiangsu China

4. Department of Biogeochemical Integration Max Planck Institute for Biogeochemistry Jena Germany

5. College of Earth and Environmental Sciences Lanzhou University Lanzhou China

6. International Institute for Earth System Sciences Nanjing University Nanjing China

7. Chongqing Survey Institute Chongqing China

Abstract

AbstractSolar‐Induced chlorophyll Fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI) with substantially improved spatiotemporal resolutions provides a new potential to improve satellite‐based phenology monitoring. The performance of TROPOMI SIF for tracking vegetation photosynthetic phenology, and how it compares to conventional vegetation indices (VIs)‐based approaches, however, have not been adequately assessed. Total canopy SIF, as a better proxy of Gross Primary Productivity (GPP) than original directional SIF, is a new SIF to estimate phenology while its performance has not been investigated. This study assesses the capability of TROPOMI SIF before and after canopy correction for phenology monitoring and improves our understanding of these questions. Benchmarked by tower‐based GPP, TROPOMI SIF generally performed better than VIs, especially for capturing the End Of Season (EOS) of vegetation photosynthetic activity at deciduous broadleaf forest (DBF), evergreen forest (ENF), and croplands (CRO) sites, but not for Start Of Season (SOS). This suggested that the advantage of SIF over VIs depended on phenological metrics. The total canopy SIF emission obtained through canopy correction generally performed better than the original SIF retrievals, especially in estimating the EOS of forest sites (DBF, MF, ENF), but soil correction did not further improve the accuracy of phenological monitoring. When comparing SIF‐ and VI‐based phenological metrics over northern terrestrial ecosystems, SIF showed earlier senescence date widely, while the differences in onset date were region dependent. These results indicate the necessity of canopy correction to convert directional SIF to canopy total SIF when using satellite SIF products to estimate phenological metrics.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3