River Corridor Sources Dominate CO2 Emissions From a Lowland River Network

Author:

Kirk Lily1ORCID,Cohen Matthew J.2ORCID

Affiliation:

1. School of Natural Resources and Environment University of Florida Gainesville FL USA

2. School of Forest, Fisheries, and Geomatics Sciences University of Florida Gainesville FL USA

Abstract

AbstractRivers and streams are control points for CO2 emission to the air (fCO2), with emission rates often exceeding internal metabolism (net ecosystem production, NEP). The difference is usually attributed to CO2‐supersaturated groundwater inputs from upland soil respiration and rock weathering, but this implies a terrestrial‐to‐aquatic C transfer greater than estimated by terrestrial mass balance. One explanation is that riparian zones—rich in organic and inorganic C but mostly neglected in terrestrial mass balances—contribute disproportionately to fCO2. To test this hypothesis, we measured fCO2, NEP, and the lateral CO2 contributions from both terrestrial uplands (TER) and riparian wetlands (RIP) for seven reaches in a lowland river network in Florida, USA. NEP contributed about half of fCO2, but the remaining CO2 emission was generally much larger than measured TER. The relative importance of RIP versus TER varied markedly between contrasting hydrogeologic settings: RIP contributed 49% of fCO2 where geologic confinement forced lateral drainage through riparian soils, but only 12% where unconfined karst allowed deeper groundwater flowpaths that bypassed riparian zones. On a land area basis, the narrow riparian corridor yielded far more CO2 than the terrestrial uplands (33.1 vs. 1.4 g‐C m−2 yr−1), resulting in river corridors (i.e., stream channel plus adjacent wetlands, NEP + RIP) sourcing 87% of fCO2 to streams. Our findings imply that true terrestrial CO2 subsidies to streams may be smaller than previously estimated by aquatic mass balance and highlight the importance of explicitly integrating riparian zones into the conceptual model for terrestrial‐to‐aquatic C transfer.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3