Tundra Browning in the Indigirka Lowlands (North‐Eastern Siberia) Explained by Drought, Floods and Small‐Scale Vegetation Shifts

Author:

Magnússon Rúna Í.1ORCID,Groten Finn1ORCID,Bartholomeus Harm2,van Huissteden Ko3,Heijmans Monique M. P. D.1

Affiliation:

1. Plant Ecology & Nature Conservation Group Wageningen University Wageningen the Netherlands

2. Laboratory for Geo‐information Science & Remote Sensing Wageningen University Wageningen the Netherlands

3. Faculty of Science Vrije Universiteit Amsterdam the Netherlands

Abstract

AbstractContrary to the general “greening of the Arctic”, the Siberian Indigirka Lowlands show strong “browning” (a decrease in the Normalized Difference Vegetation Index or “NDVI”) in various recent satellite records. Since greening and browning are generally indicative of increases and losses in photosynthetically active biomass, this browning trend may have implications for the carbon balance and vegetation of this Arctic tundra region. To explore potential mechanisms responsible for this trend break from general Arctic greening, we studied timeseries of Landsat summer maximum NDVI, weather data, and high‐resolution maps of vegetation compositional change, topography, geomorphology and hydrology. We find that a significant proportion of browning (lower summer NDVI) is explained by moisture dynamics, with high snow depths and resulting floods as well as summer drought coinciding with low NDVI. Relations between seasonal weather variables and NDVI are spatially heterogeneous, with floodplains, drained thaw lake basins and Yedoma ridges showing different patterns of association with weather variables. Low summer NDVI after high snowfall was particularly evident in floodplains, likely explained by early summer floods. Local small‐scale vegetation changes explained only small amounts of variance in browning rates in Landsat NDVI. Local expansion of Sphagnum vegetation in particular may have contributed to recent browning of our study site, but higher resolution NDVI timeseries are necessary to accurately constrain the role of small‐scale vegetation shifts. Overall, associations identified in this study suggest that future increases in Arctic precipitation variability and extremes may limit tundra greening, but to different extents even across comparatively small topographical contrasts.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3