Net Climate Effects of Moose Browsing in Early Successional Boreal Forests by Integrating Carbon and Albedo Dynamics

Author:

Salisbury John1,Hu Xiangping2ORCID,Speed James D. M.1,Iordan Cristina Maria2,Austrheim Gunnar1,Cherubini Francesco2

Affiliation:

1. Department of Natural History NTNU University Museum Norwegian University of Science and Technology (NTNU) Trondheim Norway

2. Department of Energy and Process Engineering Industrial Ecology Program Norwegian University of Science and Technology (NTNU) Trondheim Norway

Abstract

AbstractMoose (Alces alces) is a large herbivore that can mediate boreal forest regeneration after timber harvest through selective browsing of tree species. Despite increasing evidence of moose browsing influence on tree growth in early successional forests, climate effects due to changes in carbon sequestration rates and biophysical factors such as albedo remain largely unexplored. We used 11 years of data from 44 pair‐sites of herbivore exclosures within clear‐cut forests in Norway to investigate how moose browsing alters aboveground tree biomass and albedo. We find a higher total aboveground tree biomass (mainly deciduous species) in unbrowsed than browsed forest plots, as moose browsing limited the growth of tree biomass. The effect of moose exclosure on relative tree abundances differed between sites, suggesting that moose browsing has stronger effects on forest structure than composition. At the same time, moose increased forest albedo relative to un‐browsed forests, driving biophysical cooling. When averaged at regional levels, climate effects due to changes in biomass and albedo are of similar magnitude, but contributions can diverge in specific locations. In a region with intensive forestry operations and high moose density, CO2 emissions from moose browsing in post‐harvested sites can be equal to about 40% of the annual emissions of fossil fuels from that region. Cooling effects from increased albedo can offset about two thirds of this impact. Given its influence on tree growth rates and climate impacts, management of moose browsing density should be integrated into forest management plans to optimize climate change mitigation and forest productivity.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3