Regional Sources and Seasonal Variability of Rainwater Dissolved Organic and Inorganic Nitrogen at a Mid‐Atlantic, USA Coastal Site

Author:

Czarnecki J. I.12ORCID,Levia D. F.34ORCID,Scudlark J. R.1,Ouyang T.1,Wozniak A. S.1ORCID

Affiliation:

1. School of Marine Science and Policy College of Earth, Ocean & Environment University of Delaware Lewes DE USA

2. Now at: College of Forest Resources and Environmental Science Michigan Technological University Houghton MI USA

3. Department of Geography and Spatial Sciences College of Earth, Ocean & Environment University of Delaware Newark DE USA

4. Department of Plant and Soil Sciences College of Agriculture and Natural Resources University of Delaware South College Avenue Newark DE USA

Abstract

AbstractChanges in anthropogenic activities have altered the speciation and concentration of inorganic reactive nitrogen (Nr) delivered to coastal and oceanic waters with precipitation. Less is known about rainwater dissolved organic nitrogen (DON) despite its quantitative importance (>20% of Nr) and potential contributions to primary and secondary production. We document decreases in rainwater nitrogen and carbon amounts between 1994 and 2019 in Delaware, USA with the major reduction observed for nitrate (64%) reflecting emissions technology improvements. [DON] in 2019 was 55% that of 1994, though only 2 years of data are available precluding any assessment of trends. Season, airmass back trajectory (AMBT), rainfall amount, and meteorology influenced Nr amounts in 2018–2019 rain. [DON], which peaked in Summer, had different seasonal patterns than inorganic Nr and dissolved organic carbon, suggesting a biological source. Marine AMBT events showed the lowest Nr abundances. AMBTs from the southwest had the highest concentrations of Nr and DOC partially due to low rainfall amounts. Characterization of the oxidized fraction of DON revealed abundant highly unsaturated aliphatic and peptide‐like formulas suggesting a combination of secondary organic, biomass burning, and biological sources. The large changes in Nr and DOC loads emphasize the dynamic nature of atmosphere to land/water fluxes due to the influence of anthropogenic processes with potential implications for coastal and oceanic water quality and ecology. Models of atmospheric deposition to watersheds and the ocean should be frequently reevaluated with current data to accurately assess inputs from changing atmospheric sources.

Funder

University of Delaware

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3