A Constrained Spectral Approximation of Subgrid‐Scale Orography on Unstructured Grids

Author:

Chew Ray1ORCID,Dolaptchiev Stamen1,Wedel Maja‐Sophie1,Achatz Ulrich1ORCID

Affiliation:

1. Institute for Atmospheric and Environmental Sciences Goethe University Frankfurt Frankfurt am Main Germany

Abstract

AbstractThe representation of subgrid‐scale orography is a challenge in the physical parameterization of orographic gravity‐wave sources in weather forecasting. A significant hurdle is encoding as much physical information with as simple a representation as possible. Other issues include scale awareness, that is, the orographic representation has to change according to the grid cell size and usability on unstructured geodesic grids with non‐quadrilateral grid cells. This work introduces a novel spectral analysis method approximating a scale‐aware spectrum of subgrid‐scale orography on unstructured geodesic grids. The dimension of the physical orographic data is reduced by more than two orders of magnitude in its spectral representation. Simultaneously, the power of the approximated spectrum is close to the physical value. The method is based on well‐known least‐squares spectral analyses. However, it is robust to the choice of the free parameters, and tuning the algorithm is generally unnecessary. Numerical experiments involving an idealized setup show that this novel spectral analysis performs significantly better than a straightforward least‐squares spectral analysis in representing the physical energy of a spectrum. Studies involving real‐world topographic data are conducted, and reasonable error scores within ±10% error relative to the maximum physical quantity of interest are achieved across different grid sizes and background wind speeds. The deterministic behavior of the method is investigated along with its principal capabilities and potential biases, and it is shown that the error scores can be iteratively improved if an optimization target is known. Discussions on the method's limitations and broader applicability conclude this work.

Funder

Schmidt Futures

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3