High‐Dimensional Covariance Estimation From a Small Number of Samples

Author:

Vishny David1ORCID,Morzfeld Matthias1ORCID,Gwirtz Kyle2,Bach Eviatar34ORCID,Dunbar Oliver R. A.3ORCID,Hodyss Daniel5

Affiliation:

1. Scripps Institution of Oceanography University of California San Diego CA USA

2. NASA Goddard Space Flight Center Greenbelt MD USA

3. California Institute of Technology Pasadena CA USA

4. University of Reading Reading UK

5. Remote Sensing Division Naval Research Laboratory Washington DC USA

Abstract

AbstractWe synthesize knowledge from numerical weather prediction, inverse theory, and statistics to address the problem of estimating a high‐dimensional covariance matrix from a small number of samples. This problem is fundamental in statistics, machine learning/artificial intelligence, and in modern Earth science. We create several new adaptive methods for high‐dimensional covariance estimation, but one method, which we call Noise‐Informed Covariance Estimation (NICE), stands out because it has three important properties: (a) NICE is conceptually simple and computationally efficient; (b) NICE guarantees symmetric positive semi‐definite covariance estimates; and (c) NICE is largely tuning‐free. We illustrate the use of NICE on a large set of Earth science–inspired numerical examples, including cycling data assimilation, inversion of geophysical field data, and training of feed‐forward neural networks with time‐averaged data from a chaotic dynamical system. Our theory, heuristics and numerical tests suggest that NICE may indeed be a viable option for high‐dimensional covariance estimation in many Earth science problems.

Funder

National Science Foundation

Heising-Simons Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3