Atlantic Water Boundary Current Along the Southern Yermak Plateau, Arctic Ocean

Author:

Fer Ilker12ORCID,Peterson Algot K.13ORCID,Nilsen Frank12ORCID

Affiliation:

1. Geophysical Institute University of Bergen Bergen Norway

2. The University Centre in Svalbard (UNIS) Longyearbyen Norway

3. Now at Multiconsult Norge AS Bergen Norway

Abstract

AbstractThe major ocean current that carries heat into the Arctic Ocean splits into three main branches of Atlantic Water (AW) and recirculations when it encounters the Yermak Plateau (YP) located north of Svalbard. While the branches that cross the plateau and recirculations have been extensively studied, there has been limited observation of the transport and variability of the Yermak branch. In this study, we present year‐round observations from an array of three moorings that were deployed across the boundary current on the southern slope of the YP. The temporal‐averaged sections show a surface‐intensified AW core, which is strongest in winter but also persistent throughout the record within the upper 500 m. The volume transport of AW is highest in fall (1.4 ± 0.2 Sv; 1 Sv = 106 m3 s−1) and decreases to 0.8 ± 0.1 Sv in summer. Beneath a surface‐intensified core, the velocity profile has a minimum at middepth, gradually increasing toward the bottom. This cold, bottom‐intensified current is detectable in all seasons and reaches a maximum transport of 1.5 Sv in spring. The transport of AW is regulated by wind stress curl and coastal upwelling along the northwestern shelf of Svalbard. A positive wind stress curl increases the volume transport in the Yermak branch, thereby reducing the Svalbard branch transport. Eddy kinetic energy is surface‐intensified and decreases to negligible values below 500 m. In the upper 500 m, the average baroclinic conversion in winter and summer is about 1 × 10−5 W m−3, which is 4–10 times the barotropic conversion rates.

Funder

Norges Forskningsråd

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3