Mechanisms Controlling Interannual Variability of Seasonal Hypoxia Off the Changjiang River Estuary

Author:

Zhang Wenxia123ORCID,Zhou Feng12ORCID,Huang Daji1ORCID,Chen Jianfang14ORCID,Zhu Jianrong5ORCID

Affiliation:

1. State Key Laboratory of Satellite Ocean Environment Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China

2. Observation and Research Station of Yangtze River Delta Marine Ecosystems Ministry of Natural Resources Zhoushan China

3. Southern Marine Science and Engineering Guangdong Laboratory Zhuhai China

4. Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China

5. State Key Laboratory of Estuarine and Coastal Research East China Normal University Shanghai China

Abstract

AbstractHypoxia has long been a symptom of deteriorating ecosystem that threatens the health of estuarine and coastal waters. Episodic hypoxia events and intraseasonal variation of coastal hypoxia have been amply investigated. However, interannual variability of coastal hypoxia has only been assessed in few regions. Bottom hypoxia forms seasonally off the Changjiang River Estuary in the East China Sea mainly due to the large riverine inputs. Large river discharge and its interactions with ambient water combine to contribute to the development of episodic hypoxia events and the intraseasonal migration of bottom hypoxia. However, little is known about the interannual variation of bottom hypoxia in this region. This study used a well‐evaluated, coupled physical–biogeochemical model to explore the long‐term feature of hypoxia in the East China Sea. The bottom water in the hypoxic zone lost oxygen with a rate of −1.2 mmol/m3/year. Bottom hypoxia showed large interannual variations of geographical location, severity, volume expansion, and sustainment. Large Changjiang River discharge was a prerequisite for hypoxia formation and the associated interannual variation. The interannual variations in the direction and strength of shelf wind controlled long‐term distribution of Changjiang diluted water. The delivery of freshwater fundamentally determined the strength of vertical stratification and the rates of biogeochemical cycles, contributing 73% of the interannual variation of bottom hypoxia.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3