Tracer Stirring and Variability in the Antarctic Circumpolar Current Near the Southwest Indian Ridge

Author:

Balwada Dhruv1ORCID,Gray Alison R.2ORCID,Dove Lilian A.34,Thompson Andrew F.3ORCID

Affiliation:

1. Lamont‐Doherty Earth Observatory Columbia University Palisades NY USA

2. School of Oceanography University of Washington Seattle WA USA

3. Division of Geological and Planetary Sciences Environmental Science and Engineering California Institute of Technology Pasadena CA USA

4. Department of Earth, Environmental, and Planetary Sciences Brown University Providence RI USA

Abstract

AbstractOceanic macroturbulence is efficient at stirring and transporting tracers. The dynamical properties of this stirring can be characterized by statistically quantifying tracer structures. Here, we characterize the macroscale (1–100 km) tracer structures observed by two Seagliders downstream of the Southwest Indian Ridge in the Antarctic Circumpolar Current (ACC). These are some of the first glider observations in an energetic standing meander of the ACC, a region associated with enhanced ventilation. The small‐scale density variance in the mixed layer (ML) was relatively enhanced near the surface and base of the ML, while being muted at mid‐depth in the ML, suggesting the formation mechanism to be associated with ML instabilities and eddies. In addition, ML density fronts were formed by comparable contributions from temperature and salinity gradients. In the interior, along‐isopycnal spectra and structure functions of spice indicated that there is relatively lower variance at smaller scales than would be expected based on non‐local stirring, suggesting that flows smaller than the deformation radius play a role in the cascade of tracers to small scales. These interior spice anomalies spanned across isopycnals, and were found to be about 3–5 times flatter than the aspect ratio that would be expected for O(1) Burger number flows like interior QG dynamics, suggesting the ratio of vertical shear to horizontal strain is greater than N/f. This further supports that small‐scale flows, with high‐mode vertical structures, impact tracer distributions.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3