Importance of Seasonally Evolving Near‐Surface Salinity Stratification on Mixed Layer Heat Budget During Summer Monsoon Intraseasonal Oscillation in the Northern Bay of Bengal in 2019

Author:

Sherin V. R.12ORCID,Girishkumar M. S.1ORCID,Shivaprasad S.1,Sureshkumar N.1,Farrar J. T.3ORCID,Athulya K.12ORCID,Ashin K.12,Rama Rao E. Pattabhi1,Sengupta D.45,Venkatesan R.6,Ravichandran M.7

Affiliation:

1. Ministry of Earth Sciences Indian National Centre for Ocean Information Services Hyderabad India

2. School of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Kochi India

3. Woods Hole Oceanographic Institution Woods Hole MA USA

4. Centre for Atmospheric and Oceanic Sciences Indian Institute of Science Bangalore India

5. Center for Geophysical Flows Indian Institute of Technology Madras Chennai India

6. National Centre for Coastal Research Chennai India

7. Ministry of Earth Sciences New Delhi India

Abstract

AbstractThe discharge of freshwater from major rivers into the northern Bay of Bengal (BoB) increases dramatically during the summer monsoon season, reaching a peak in August–September, and there is a corresponding increase in the vertical salinity gradient in the upper ocean. Here we study the impact of seasonally evolving near‐surface salinity stratification on the response of ocean mixed layer temperature (MLT) to Summer Monsoon Intraseasonal Oscillations (MISO), using accurate surface fluxes and high vertical resolution (∼2 m) hydrographic measurements from a mooring in the northern BoB (17.8°N, 89.5°E) during June–September 2019. Prominent MLT warming and cooling with a range of 1.5°C is observed between suppressed (clear skies, calm winds) and active (cloudy, windy) phases of MISO convection. However, the intraseasonal MLT response to the active phase of a late‐season MISO event is minimal compared to MISO events in early summer. We infer this is primarily due to the much smaller contribution from oceanic vertical processes (∼6 Wm−2) in late summer 2019, compared to their role in early summer (−15 to −55 Wm−2). During the active phase of the MISO event of late summer 2019, the combined effect of reduced entrainment and weak vertical temperature gradients associated with a barrier layer inhibits near‐surface cooling. Conversely, the near‐surface salinity stratification and the barrier layer are weak during MISO events in the early summer of 2019—these hydrographic conditions lead to enhanced MLT cooling in response to MISO, apparently through a freer turbulent exchange of cool thermocline water with the surface layer.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Submesoscale Dynamics in the Bay of Bengal: Inversions and Instabilities;Journal of Geophysical Research: Oceans;2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3