Mechanisms of Salt Overspill at Estuarine Network Junctions Explained With an Idealized Model

Author:

Biemond Bouke1ORCID,de Swart Huib E.1ORCID,Dijkstra Henk A.1ORCID

Affiliation:

1. Department of Physics Institute for Marine and Atmospheric research Utrecht Utrecht University Utrecht The Netherlands

Abstract

AbstractSalt overspill, defined as the net salt transport from a channel of an estuarine network through a junction to another channel, can be a major contributor to salt intrusion. Here, an idealized subtidal model is constructed of a network consisting of one river channel and two sea channels, and used to investigate the sensitivity of overspill to different values of river discharge, tidal current, width, and depth of the channels. Two prototype systems are considered: the North and South Passage of the Yangtze Estuary and the Modaomen and Hongwan Channel of the Pearl River Estuary. Model results indicate that in both systems, increasing river discharge decreases the amount of salt overspill, except in the regime of weak river discharge in the Yangtze Estuary. Increasing the strength of the tidal current increases the overspill in the Yangtze Estuary, but it decreases the overspill in the Modaomen Estuary. Analysis of the model results shows that salt overspill is linearly related to the salinity difference at the upstream boundary of the two seaward channels, when they are considered as single channel estuaries. This salinity difference occurs because conditions in the channels are not identical, which results in different net water transports (causing export of salt), exchange flows, and horizontal diffusion (causing import of salt). An analytical expression is derived, which explains the dependency of salt overspill to the factors mentioned above.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3