Rapidly Changing East Asian Marine Heatwaves Under a Warming Climate

Author:

Lee S.12ORCID,Park M. S.1ORCID,Kwon M.3,Park Y. G.3ORCID,Kim Y. H.4,Choi N.5ORCID

Affiliation:

1. Korea Ocean Satellite Center Korea Institute of Ocean Science & Technology (KIOST) Busan South Korea

2. Ocean Science University of Science and Technology Daejeon South Korea

3. Ocean Circulation and Climate Research Center KIOST Busan South Korea

4. Department of Oceanography Pukyong National University Busan South Korea

5. Department of Urban and Environmental Engineering Ulsan National Institute of Science and Technology Ulsan South Korea

Abstract

AbstractThe East Asian marginal seas (EAMS) are one of the fastest‐warming ocean regions globally. This study presents the long‐term trends (1982–2020) of extreme ocean warming events called “marine heatwaves” over the EAMS and examines the relationships between marine heatwave trends and mean SST warming trends. We focus on five subregions with different influences from atmospheric perturbation and ocean currents: the northern East Sea (N‐ES), southern East Sea, Yellow Sea, Korea Strait (KS), and East China Sea (ECS). During the past four decades, marine heatwave duration and intensity in the EAMS have increased to approximately +4 days and +0.3°C per decade on average, respectively. In summer, the positive trend of marine heatwaves is the highest in the ECS, primarily due to the rapidly increasing mean sea surface temperature (SST). In winter, the N‐ES reveals remarkably rapid increases in marine heatwave properties in the last two decades, with increasing rates of approximately 6.2 (4.9) times longer total duration (stronger intensity) than the global average changes. Beyond the impact of the rapid increase in mean SST, the N‐ES marine heatwaves can be further extended due to the northward shift of the East Korea Warm Current. In general, mean SST changes are critical to the increasing trend in marine heatwave duration and intensity. This study further emphasizes that the changes in ocean circulation may expedite more rapid changes in extreme ocean events, which can produce more vulnerability in some places, such as the N‐ES, to marine heatwaves under continued global warming.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3