Interannual Variability of Subpolar Mode Water in the Subpolar North Atlantic

Author:

Stendardo I.1ORCID,Buongiorno Nardelli B.2ORCID,Durante S.23ORCID,Iudicone D.4ORCID,Kieke D.15ORCID

Affiliation:

1. University of Bremen Institute of Environmental Physics Bremen Germany

2. Istituto di Scienze Marine Consiglio Nazionale delle Ricerche Rome Italy

3. Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino Consiglio Nazionale delle Ricerche Rome Italy

4. Stazione Zoologica Anton Dohrn di Napoli Naples Italy

5. Bundesamt für Seeschifffahrt und Hydrographie (BSH) Hamburg Germany

Abstract

AbstractSubpolar Mode Water (SPMW) is an important water mass originating in the eastern North Atlantic. Its formation, subject to modification through oceanic interior mixing, can directly influence the volume of water contributing to the Atlantic meridional overturning circulation. Utilizing observation‐based data sets spanning from 1993 to 2018, we estimated the formation rates and volume of SPMW within isopycnal layers and examined its temporal variability. Two complementary approaches were used to estimate the formation rate: a thermodynamic approach focusing on the air‐sea interactions and a kinematic approach involving volume transport from the mixed layer to the ocean's interior, including the entrainment/detrainment of the mixed layer itself. This is the first time that thermodynamic and kinematic approaches are applied to observation‐based data in the North Atlantic. Our results suggest a substantial role of diapycnal mixing in diluting the dense waters formed by air‐sea fluxes toward the range of SPMW densities. The study reveals a complex interplay of processes, with entrainment being the primary driver of subduction/obduction rates, while advection contributes to the overall small‐scale dynamics. Variations in the volume and location of SPMW formation are observed from year to year. Notably, when SPMW forms extensively in lighter isopycnal layers, the volume occupied by denser isopycnals decreases and vice versa. We attributed this compensation effect to a propagation signal, where formation in the lightest isopycnal bins influences the formation in denser isopycnal bins with a delay of a few years, emphasizing the circulation's role in shaping the SPMW distribution.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3