Affiliation:
1. School of Oceanography University of Washington Seattle WA USA
2. Environmental Science and Engineering California Institute of Technology Pasadena CA USA
3. Department of Oceanography School of Ocean and Earth Science and Technology University of Hawaii at Manoa Manoa HI USA
Abstract
AbstractDespite its importance for the global cycling of carbon, there are still large gaps in our understanding of the processes driving annual and seasonal carbon fluxes in the high‐latitude Southern Ocean. This is due in part to a historical paucity of observations in this remote, turbulent, and seasonally ice‐covered region. Here, we use autonomous biogeochemical float data spanning 6 full seasonal cycles and with circumpolar coverage of the Southern Ocean, complemented by atmospheric reanalysis, to construct a monthly climatology of the mixed layer budget of dissolved inorganic carbon (DIC). We investigate the processes that determine the annual mean and seasonal cycle of DIC fluxes in two different zones of the Southern Ocean—the Sea Ice Zone (SIZ) and Antarctic Southern Zone (ASZ). We find that, annually, mixing with carbon‐rich waters at the base of the mixed layer supplies DIC which is, in the ASZ, either used for net biological production or outgassed to the atmosphere. In contrast, in the SIZ, where carbon outgassing and the biological pump are weaker, the surplus of DIC is instead advected northward to the ASZ. In other words, carbon outgassing in the southern Antarctic Circumpolar Current (ACC), which has been attributed to remineralized carbon from deep water upwelled in the ACC, is also due to the wind‐driven transport of DIC from the SIZ. These results stem from the first observation‐based carbon budget of the circumpolar Southern Ocean and thus provide a useful benchmark to evaluate climate models, which have significant biases in this region.
Funder
National Science Foundation
National Oceanic and Atmospheric Administration
Publisher
American Geophysical Union (AGU)
Subject
Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献