Nonlinear Internal Tides in a Realistically Forced Global Ocean Simulation

Author:

Solano Miguel S.1ORCID,Buijsman Maarten C.1ORCID,Shriver Jay F.2ORCID,Magalhaes Jorge3ORCID,da Silva Jose3ORCID,Jackson Christopher4,Arbic Brian K.5ORCID,Barkan Roy67ORCID

Affiliation:

1. School of Ocean Science and Engineering The University of Southern Mississippi Stennis Space Center Bay St. Louis MS USA

2. Naval Research Laboratory Stennis Space Center Bay St. Louis MS USA

3. Faculty of Sciences University of Porto Porto Portugal

4. Global Ocean Associates Alexandria VA USA

5. Department of Earth and Environmental Sciences University of Michigan Ann Arbor MI USA

6. Porter School of the Environment and Earth Sciences Tel Aviv University Tel Aviv Israel

7. Department of Atmospheric and Ocean Sciences University of California Los Angeles Los Angeles CA USA

Abstract

AbstractThe decay of the low‐mode internal tide due to the superharmonic energy cascade is investigated in a realistically forced global Hybrid Coordinate Ocean Model simulation with 1/25° (4 km) horizontal grid spacing. Time‐mean and depth‐integrated supertidal kinetic energy is found to be largest near low‐latitude internal tide generation sites, such as the Bay of Bengal, Amazon Shelf, and Mascarene Ridge. The supertidal kinetic energy can make up to 50% of the total internal tide kinetic energy several hundred kilometers from the generation sites. As opposed to the tidal flux divergence, the supertidal flux divergence does not correlate with the barotropic to baroclinic energy conversion. Instead, the time‐mean and depth‐integrated supertidal flux divergence correlates with the nonlinear kinetic energy transfers from (sub)tidal to supertidal frequency bands as estimated with a novel coarse‐graining approach. The regular spaced banding patterns of the surface‐intensified nonlinear energy transfers are attributed to semidiurnal mode 1 and mode 2 internal waves that interfere constructively at the surface. This causes patches where both surface tidal kinetic energy and nonlinear energy transfers are elevated. The simulated internal tide off the Amazon Shelf steepens significantly near these patches, generating solitary‐like waves in good agreement with Synthetic Aperture Radar imagery. Globally, we find that regions of high supertidal energy flux also show a high correlation with observed instances of internal solitary waves.

Funder

Office of Naval Research

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3