Plan‐Form Evolution of Drainage Basins in Response to Tectonic Changes: Insights From Experimental and Numerical Landscapes

Author:

Habousha K.1ORCID,Goren L.1ORCID,Nativ R.123ORCID,Gruber C.4ORCID

Affiliation:

1. Department of Earth and Environmental Sciences Ben Gurion University of the Negev Beer Sheva Israel

2. Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam Germany

3. Institute of Earth and Environmental Science University of Potsdam Potsdam Germany

4. Department of Civil and Environmental Engineering Vanderbilt University Nashville TN USA

Abstract

AbstractSpatial gradients in rock uplift control the relief and slope distribution in uplifted terrains. Relief and slopes, in turn, promote channelization and fluvial incision. Consequently, the geometry of drainage basins is linked to the spatial pattern of uplift. When the uplift pattern changes, basin geometry is expected to change by migrating water divides. However, the relations between drainage pattern and changing uplift patterns remain elusive. The current study investigates the plan‐view evolution of drainage basins and the reorganization of drainage networks in response to changes in the spatial pattern of uplift, focusing on basin interactions that produce globally observed geometrical scaling relations. We combine landscape evolution experiments and simulations to explore a double‐stage scenario: the emergence of a fluvial network under block uplift conditions followed by tilting that forces drainage reorganization. We find that the globally observed basin spacing ratio and Hack's parameters emerge early in the basin formation and are maintained by differential basin growth. In response to the tilting, main divide migration induces basin size changes. However, basins' scaling relations are mostly preserved within a narrow range of values, assisted by incorporation and disconnection of basins to and from the migrating main divide. Lastly, owing to similarities in landscape dynamics and response rate to uplift pattern changes between experiments and simulations, we conclude that the stream power incision model can represent fluvial erosion processes operating in experimental settings.

Funder

Israel Science Foundation

Ben-Gurion University of the Negev

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3