Affiliation:
1. Department of Earth and Environmental Sciences Ben Gurion University of the Negev Beer Sheva Israel
2. Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam Germany
3. Institute of Earth and Environmental Science University of Potsdam Potsdam Germany
4. Department of Civil and Environmental Engineering Vanderbilt University Nashville TN USA
Abstract
AbstractSpatial gradients in rock uplift control the relief and slope distribution in uplifted terrains. Relief and slopes, in turn, promote channelization and fluvial incision. Consequently, the geometry of drainage basins is linked to the spatial pattern of uplift. When the uplift pattern changes, basin geometry is expected to change by migrating water divides. However, the relations between drainage pattern and changing uplift patterns remain elusive. The current study investigates the plan‐view evolution of drainage basins and the reorganization of drainage networks in response to changes in the spatial pattern of uplift, focusing on basin interactions that produce globally observed geometrical scaling relations. We combine landscape evolution experiments and simulations to explore a double‐stage scenario: the emergence of a fluvial network under block uplift conditions followed by tilting that forces drainage reorganization. We find that the globally observed basin spacing ratio and Hack's parameters emerge early in the basin formation and are maintained by differential basin growth. In response to the tilting, main divide migration induces basin size changes. However, basins' scaling relations are mostly preserved within a narrow range of values, assisted by incorporation and disconnection of basins to and from the migrating main divide. Lastly, owing to similarities in landscape dynamics and response rate to uplift pattern changes between experiments and simulations, we conclude that the stream power incision model can represent fluvial erosion processes operating in experimental settings.
Funder
Israel Science Foundation
Ben-Gurion University of the Negev
Publisher
American Geophysical Union (AGU)
Subject
Earth-Surface Processes,Geophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献