Machine Learning Applied to a Modern‐Pleistocene Petrographic Data Set: The Global Prediction of Sand Modal Composition (GloPrSM) Model
Author:
Affiliation:
1. Department of Geosciences University of Arkansas Fayetteville AR USA
2. Utah Geological Survey Salt Lake City UT USA
Publisher
American Geophysical Union (AGU)
Subject
Earth-Surface Processes,Geophysics
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022JF006595
Reference106 articles.
1. The Statistical Analysis of Compositional Data
2. Amante C. &Eakins B. W.(2009).ETOPO1 1 arc‐minute global Relief model: Procedures data sources and analysis: NOAA technical memorandum NESDIS NGDC‐24[Dataset]. National Geophysical Data Center. Accessed [September 2021].https://doi.org/10.7289/V5C8276M
3. Influence of Climate and Relief on Compositions of Sands Released at Source Areas
4. Plate Tectonics and Geochemical Composition of Sandstones
5. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting sand composition (QFR) delivered into Miocene GOM basin using basin catchments features and leveraging machine learning algorithm;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14
2. Petrographic composition and heavy minerals in modern river sand: A global database;Geoscience Data Journal;2023-09-07
3. Source-to-sink analysis of deepwater systems: Principles, applications and case studies;Deepwater Sedimentary Systems;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3