Affiliation:
1. Divecha Centre for Climate Change Indian Institute of Science Bengaluru India
2. Department of Geography University of Zurich Zürich Switzerland
3. Institute for Environmental Sciences University of Geneva Geneva Switzerland
4. Institute of Geography and Regional Science University of Graz Graz Austria
5. Department of Geology and Environmental Geosciences University of Dayton Dayton OH USA
6. Department of Earth Sciences India Institute of Technology Roorkee Roorkee India
7. Department of Civil Engineering India Institute of Technology Bombay Mumbai India
Abstract
AbstractGlacial lake outburst floods (GLOFs) are a severe threat to communities in the Himalayas; however, GLOF mitigation strategies have been implemented for only a few lakes, and future changes in hazard are rarely considered. Here, we present a comprehensive assessment of current and future GLOF hazard for Gepang Gath Lake, Western Himalaya, considering rock and/or ice avalanches cascading into the lake. We consider ground surface temperature and topography to define avalanche source zones located in areas of potentially degrading permafrost. GLOF process chains in current and future scenarios, also considering engineered lake lowering of 10 and 30 m, were evaluated. Here, varied avalanche impact waves, erosion patterns, debris flow hydraulics, and GLOF impacts at Sissu village, under 18 different scenarios were assessed. Authors demonstrated that a larger future lake does not necessarily produce larger GLOF events in Sissu, depending, among other factors, on the location from where the triggering avalanche initiates and strikes the lake. For the largest scenarios, 10 m of lowering reduces the high‐intensity zone by 54% and 63% for the current and future scenarios, respectively, but has little effect on the medium‐intensity flood zone. Even with 30 m of lake lowering, the Sissu helipad falls in the high‐intensity zone under all moderate‐to‐large scenarios, with severe implications for evacuations and other emergency response actions. The approach can be extended to other glacial lakes to demonstrate the efficiency of lake lowering as an option for GLOF mitigation and enable a robust GLOF hazard and risk assessment.
Funder
National Aeronautics and Space Administration
Publisher
American Geophysical Union (AGU)
Subject
Earth-Surface Processes,Geophysics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献