Lateral Erosion of Bedrock Channel Banks by Bedload and Suspended Load

Author:

Li Tingan12ORCID,Venditti Jeremy G.12ORCID,Sklar Leonard S.2ORCID,Lamb Michael P.3

Affiliation:

1. Department of Geography Simon Fraser University Burnaby BC Canada

2. School of Environmental Science Simon Fraser University Burnaby BC Canada

3. Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA

Abstract

AbstractBedrock rivers carry large amounts of fine sediment in suspension. We developed a mechanistic model for erosion of bedrock channel banks by impacting bedload and suspended load particles that are advected laterally by turbulent eddies (advection‐abrasion model). The model predicts high lateral erosion rates near the bed, with rates decreasing up to the water surface. The model also predicts greater erosion within the suspended load layer than the bedload layer for many typical sediment supply and transport conditions explored. We compared the advection‐abrasion model with a previously derived model for lateral erosion of bedrock banks by bedload particles deflected by stationary bed alluvium (deflection‐abrasion model). Erosion rates predicted by the deflection‐abrasion model are lower, except within limited conditions where sediment is transported near the threshold of motion and the bed is near fully covered in sediment. Both processes occur in bedrock rivers at the same time, so we combined the advection‐abrasion and deflection‐abrasion models and found that the lateral erosion rate generally increases with increasing transport stage and relative sediment supply for a given grain size. Application of our combined‐abrasion model to a natural bedrock river with a wide distribution of discharge and supply events, and mixed grain sizes, indicates that finer sediment dominates the lateral erosion on channel banks in low sediment supply environments and can be as important as coarser sediment in high sediment supply environments.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3