The Sensitivity of Tidal Channel Systems to Initial Bed Conditions, Vegetation, and Tidal Asymmetry

Author:

Geng L.123ORCID,Lanzoni S.2ORCID,D'Alpaos A.4ORCID,Sgarabotto A.2ORCID,Gong Z.1ORCID

Affiliation:

1. State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering Hohai University Nanjing China

2. Department of Civil, Environmental and Architectural Engineering University of Padova Padua Italy

3. State Key Laboratory of Estuarine and Coastal Research East China Normal University Shanghai China

4. Department of Geosciences University of Padova Padua Italy

Abstract

AbstractIn tidal environments, channel networks act as essential drainage pathways. Although the complex interactions between environmental factors have been studied extensively, the effects of the initial bathymetry on tidal network ontogeny are poorly understood. In this contribution, we used a numerical model to mimic a schematic tidal basin subjected to tidal forcing. The effects of the initial bathymetry and vegetation growth are analyzed by changing the features of randomly generated bed perturbation and the intertidal platform slope. Different perturbation densities mildly affect the growth of tidal networks, which, at equilibrium, share similar values in terms of channel length, tidal prism, and cross‐sectional area. The complexity and structure of channel networks are more sensitive to variations in the perturbation distribution. Increasing the initial bathymetry slope can shorten channels and reduce the tidal prism and drainage efficiency. Vegetation growth is found to invariably promote channel lengthening and narrowing, increasing the complexity and drainage efficiency of the system. An asymmetrical tidal forcing generally leads to longer channels and smaller unchanneled lengths. Under ebb‐dominant conditions, channels get deeper, and the increased channel length ensures a higher drainage efficiency. The insights of our study provide a deeper understanding of the environmental factors controlling the equilibrium morphology of tidal channel systems and their overall resilience. Further implications concern the restoration and management of coastal areas through the informed use of topographic changes and planting arrangements. Finally, accounting for the uncertainties associated with initial conditions is relevant when modeling other earth systems and comparing them with real systems.

Funder

National Natural Science Foundation of China

State Key Laboratory of Estuarine and Coastal Research

China Postdoctoral Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3