Distribution and Recurrence of Warming‐Induced Retrogressive Thaw Slumps on the Central Qinghai‐Tibet Plateau

Author:

Yang Dongdong12,Qiu Haijun12ORCID,Ye Bingfeng1,Liu Ya1,Zhang Juanjuan1,Zhu Yaru1

Affiliation:

1. Shaanxi Key Laboratory of Earth Surface and Environmental Carrying Capacity College of Urban and Environmental Sciences Northwest University Xi'an China

2. College of Urban and Environmental Sciences Insitute of Earth Surface System and Hazards Northwest University Xi'an China

Abstract

AbstractRetrogressive thaw slumps (RTSs) have become a dominant geomorphic event in permafrost regions due to the modern climate change. However, the roles of topographic, vegetation, and soil factors in influencing the spatial distribution and recurrence of RTSs remain not fully understood. Here, we identified the formation and recurrence of 459 RTSs during 2008–2021 using satellite images of the central Qinghai‐Tibet Plateau (Northwest of the Beiluhe Basin, 239 km2). We found that the topographic and environmental attributes of the RTSs exhibited strong correlations with the variation in the RTS density. The RTS‐affected areas had a higher slope, elevation, relative slope position, normalized difference vegetation index, soil water content, and lower soil bulk density than other landscapes. Regarding the influence of topographic and environmental attributes on the activity status of RTSs during 2018–2020, we found that the higher slope, elevation, and soil water content were advantageous for the activity of the RTSs. The RTSs with larger sizes and presenting an elongated shape were more likely to be active. Additionally, we examined the variation of the headwall shape of RTSs based on the fractal dimension and UAV‐based orthophoto. We found that the headwall shape of RTSs becomes more complicated due to the small‐scale thawing of ice‐rich permafrost, which may further induce subsequent thaw slumping. Higher air temperature triggers new RTSs, and increased precipitation may be responsible for the further activity of RTSs. Our findings can enhance our understanding of the development pattern and mechanism of RTSs in permafrost regions.

Funder

China Postdoctoral Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3