Estimating the Age of Abandoned Alluvial Surfaces Using Morphologic Dating of Gully Incision

Author:

Shmilovitz Yuval12ORCID,Shelef Eitan3ORCID,Wieler Nimrod1ORCID,Zhang Huiping4ORCID,Mushkin Amit1

Affiliation:

1. Geological Survey of Israel Jerusalem Israel

2. The Fredy & Nadine Herrmann Institute of Earth Sciences The Hebrew University of Jerusalem Jerusalem Israel

3. Department of Geology and Environmental Science University of Pittsburgh Pittsburgh PA USA

4. State Key Laboratory of Earthquake Dynamics Institute of Geology China Earthquake Administration Beijing China

Abstract

AbstractThe age of abandoned alluvial surfaces is a key component in quantifying landscape evolution processes, tectonic activity, and paleoclimate. However, limited resources, restricted field accessibility, lacking dating material and analytical constraints are often encountered when dating such landforms. To help mitigate these limitations, we propose a new and complementary surface dating approach that is based on calculating the duration of gully incision into a surface since its abandonment using a locally calibrated landscape evolution model. The approach consists of calibration of incision model parameters for abandoned alluvial surfaces with known age and then using the calibrated model to calculate the time required for gully profiles to form on nearby undated alluvial surfaces as a proxy for surface abandonment. The approach was tested on previously dated late Pleistocene (34 and 70 ka) alluvial terraces in the hyper‐arid Negev desert (Israel). Calibrated model parameters were within the range reported for incision models in arid regions worldwide and late Pleistocene surface abandonment ages were recovered to within 10% accuracy. In contrast, modeled durations for gully incision into an older mid‐Pleistocene surface previously dated to 230–549 ka were grossly underestimated at <120 ka. Field observations and approach tests indeed indicated that late Pleistocene model parameters should not be extrapolated as‐is to model gully incision farther back through geologic time. Because the validity of the proposed ages depends on extrapolating the locally calibrated parameters of the incision model, we recommend that such dating be conducted with care and where assumptions will probably be valid.

Funder

Israel Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3