Impacts of Spontaneous Waterfall Development on Bedrock River Longitudinal Profile Morphology

Author:

Rothman Sophie D.1ORCID,Scheingross Joel S.12ORCID,McCoy Scott W.12ORCID,Dow Helen W.3ORCID

Affiliation:

1. Graduate Program in Hydrologic Sciences University of Nevada Reno Reno NV USA

2. Department of Geologic Sciences and Engineering University of Nevada Reno Reno NV USA

3. Pacific Coastal and Marine Science Center United States Geological Survey Santa Cruz CA USA

Abstract

AbstractRiver profiles are shaped by climatic and tectonic history, lithology, and internal feedbacks between flow hydraulics, sediment transport and erosion. In steep channels, waterfalls may self‐form without changes in external forcing (i.e., autogenic formation) and erode at rates faster or slower than an equivalent channel without waterfalls. We use a 1‐D numerical model to investigate how self‐formed waterfalls alter the morphology of bedrock river longitudinal profiles. We modify the standard stream power model to include a slope threshold above which waterfalls spontaneously form and a rate constant allowing waterfalls to erode faster or slower than other fluvial processes. Using this model, we explore how waterfall formation alters both steady state and transient longitudinal profile forms. Our model predicts that fast waterfalls create km‐scale reaches in a dynamic equilibrium with channel slope held approximately constant at the threshold slope for waterfall formation, while slow waterfalls can create local channel slope maxima at the location of slow waterfall development. Furthermore, slow waterfall profiles integrate past base level histories, leading to multiple possible profile forms, even at steady‐state. Consistency between our model predictions and field observations of waterfall‐rich rivers in the Kings and Kaweah drainages in the southern Sierra Nevada, California, supports the hypothesis that waterfall formation can modulate river profiles in nature. Our findings may help identify how bedrock channels are influenced by waterfall erosion and aid in distinguishing between signatures of external and internal perturbations, thereby strengthening our ability to interpret past climate and tectonic changes from river longitudinal profiles.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3