Affiliation:
1. Graduate School of Science Hokkaido University Sapporo Japan
2. Now at Earth Observation Research Center Japan Aerospace Exploration Agency Tsukuba Japan
3. Faculty of Science Hokkaido University Sapporo Japan
4. Arctic Research Center Hokkaido University Sapporo Japan
5. Institute of Northern Applied Ecology North‐Eastern Federal University in Yakutsk Yakutsk Russia
6. International Arctic Research Center University of Alaska Fairbanks Fairbanks AK USA
Abstract
AbstractWildfires in Arctic regions impact landforms via permafrost degradation and subsequent deformation that can last for many years. However, it remains uncertain on if and how much deformations occur, and what controls their magnitude, particularly during the first couple of years. Here, we examine the transient post‐fire deformation responses near the Batagaika megaslump, which is the world's largest retrogressive thaw slump at Batagay, Sakha Republic. There were wildfires in the summers of 2018 and 2019 on the same slope, which could trigger the formation of another megaslump; many fires occurred nearby in 2019. We use interferometric synthetic aperture radar (InSAR) to measure surface displacements, including both post‐fire and span‐fire images. We also perform onsite measurements of temperature and thaw depth around the two scars near Batagaika megaslump in 2019, 2020, and 2021 and around the 2014 scar in 2019. At the three fire scars formed in 2018 and 2019, we demonstrate year‐to‐year and location‐specific changes in the amplitude of subsidence, heave, and duration. The 2018 scar shows cumulative subsidences of up to 10 cm by March 2021, more clearly than the nearby 2019 scar. On the other hand, another 2019 scar adjacent to the 2014 scar shows up to 13 cm net subsidence during the first span‐fire year, although the subsiding area is limited. These diverse transient post‐fire responses demonstrate that under the yedoma area the spatial heterogeneities of the active layer depth and the timing of fires will control subsequent thermokarst processes.
Funder
Japan Society for the Promotion of Science
Publisher
American Geophysical Union (AGU)
Subject
Earth-Surface Processes,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献