Comprehensive Radar Mapping of Malaspina Glacier (Sít' Tlein), Alaska—The World's Largest Piedmont Glacier—Reveals Potential for Instability

Author:

Tober B. S.1ORCID,Holt J. W.12,Christoffersen M. S.2ORCID,Truffer M.34ORCID,Larsen C. F.3,Brinkerhoff D. J.5ORCID,Mooneyham S. A.6

Affiliation:

1. Department of Geosciences University of Arizona Tucson AZ USA

2. Lunar and Planetary Laboratory University of Arizona Tucson AZ USA

3. Geophysical Institute University of Alaska Fairbanks Fairbanks AK USA

4. Department of Physics University of Alaska Fairbanks Fairbanks AK USA

5. Department of Computer Science University of Montana Missoula MT USA

6. School of Geography, Development, and Environment University of Arizona Tucson AZ USA

Abstract

AbstractMalaspina Glacier, located on the coast of southern Alaska, is the world's largest piedmont glacier. A narrow ice‐cored foreland zone undergoing rapid thermokarst erosion separates the glacier from the relatively warm waters of the Gulf of Alaska. Glacier‐wide thinning rates for Malaspina are greater than 1 m/yr, and previous geophysical investigations indicated that bed elevation exceeds 300 m below sea level in some places. These observations together give rise to the question of glacial stability. To address this question, glacier evolution models are dependent upon detailed observations of Malaspina's subglacial topography. Here, we map 2,000 line‐km of the glacier's bed using airborne radar sounding data collected by NASA's Operation IceBridge. When compared to gridded radar measurements, we find that glaciological models overestimate Malaspina's volume by more than 30%. While we report a mean bed elevation 100 m greater than previous models, we find that Malaspina inhabits a broad basin largely grounded below sea level. Several subglacial channels dissect the glacier's bed: the most prominent of these channels extends at least 35 km up‐glacier from the terminus toward the throat of Seward Glacier. Provided continued foreland erosion, an ice‐ocean connection may promote rapid retreat along these overdeepened subglacial channels, with a global sea‐level rise potential of 1.4 mm.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3