Spatio‐Temporal Variations in Sediment Delivery as a Response to Rapid Quaternary Climate Change in the Lake Malawi Rift, East Africa

Author:

Wright Lachlan J. M.12ORCID,Scholz Christopher A.1ORCID

Affiliation:

1. Department of Earth and Environmental Sciences Heroy Geology Laboratory Syracuse University NY Syracuse USA

2. Now at Chevron Technical Center, a Division of Chevron USA Inc. Houston TX USA

Abstract

AbstractThe interplay of rapid climate change and tectonics drives landscape development, sediment routing, and deposition in early‐stage continental rift systems. The Lake Malawi Rift, in the Western Branch of the East African Rift, is an archetype of a juvenile rift and an ideal natural laboratory for evaluating lacustrine source‐to‐sink systems on orbital or shorter timescales. We examine the interplay of these processes over the past 140 kyr using observations from nested seismic reflection data sets tied to scientific drill cores, which calibrate numerical forward models of this closed sedimentary system. Fault slip rates measured from seismic data drive tectonic displacements in the model. Satellite‐derived precipitation maps constrain modern precipitation and are scaled to previous hydrologic balance studies to reconstruct past climates. Our model reproduces known sediment thicknesses across the rift and accounts for 96% of the estimated siliciclastic sediment deposited over the past 140 kyr. The results demonstrate that the onset of arid climate conditions (140–95 kyr BP) causes extreme drainage adjustments downstream and the formation of mega‐catchments that flow axially into a shallow restricted paleo‐lake. Sedimentation rates during this time are twice the present values due to increased sediment focusing via these axial systems into a much smaller, hydrologically closed lake. As the climate became wetter (95–50 kyr BP), the lake rapidly expanded, decreasing both erosion and sedimentation rates across the rift. This closed‐loop approach allows us to evaluate the role of high‐frequency climate change in modulating basin physiography as well as sediment fluxes in juvenile rift systems.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3