Multipoint Observations of Dispersive Scale Alfvénic Field‐Line Resonances Associated With Substorm Auroral Beads

Author:

Hull Arthur J.1ORCID,Chaston Christopher C.1ORCID,Damiano Peter A.2ORCID,Frey Harald U.1ORCID,Wing Simon3ORCID

Affiliation:

1. Space Sciences Laboratory University of California, Berkeley Berkeley CA USA

2. Geophysical Institute University of Alaska Fairbanks Fairbanks AK USA

3. Johns Hopkins University Applied Physics Laboratory Laurel MD USA

Abstract

AbstractWe present a case study of the field‐aligned current (FAC) systems that transpire within the high‐altitude auroral acceleration region of an “auroral bead” initiated double oval substorm observed on 23 February 2001 by the Cluster fleet. Conjunctive Cluster measurements and auroral images from IMAGE reveal that auroral bead current system formation and evolution is a multi‐scale, injection‐mediated process. The FACs at large scales vary on substorm evolution time scales (∼minutes) in response to the injection and evolution of hotter denser magnetospheric plasma. Embedded within the large‐scale FACs are intense short‐scale (≲ few 10s of km) currents comprising dispersive scale Alfvén wave (DAW) fluctuations. The DAWs are a complex mixture of ingoing and reflected components that regularly interfere to form a broad spectrum of kinetic (dispersive) scale Alfvénic field‐line resonances (KFLRs). The Alfvénic currents appear as a nested series of upward and downward FAC densities with amplitudes reaching a few 100 nA/m2. Energized field‐aligned or counterstreaming electrons near keV energies and below are observed with parallel skews that vary in concert with variations in the DAW current sense. Positive correlations between DAW electric field energy densities and the energies of energized H+, He+, and O+ outflow are observed, indicative of ion energization within the DAW fields. Due to their L‐shell location (L ∼5.8–7.0) and associations with injections, the KFLRs are interpreted as the high‐altitude auroral zone analog of KFLRs observed in the equatorial inner magnetosphere.

Funder

National Aeronautics and Space Administration

National Science Foundation

U.S. Department of Energy

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3