Bending of the Western Mongolian Blocks Initiated the Late Triassic Closure of the Mongol‐Okhotsk Ocean and Formation of the Tuva‐Mongol Orocline

Author:

Zhao Pan1ORCID,Appel Erwin2ORCID,Deng Chenglong1ORCID,Xu Bei3ORCID

Affiliation:

1. State Key Laboratory of Lithospheric Evolution Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

2. Department of Geosciences University Tübingen Tübingen Germany

3. Hebei GEO University Shijiazhuang China

Abstract

AbstractBending of ribbon continents or arcs is an important tectonic process for reconstructing central Asia. Formation of the striking Tuva‐Mongol Orocline by closure of the Mongol‐Okhotsk Ocean (MOO) has long been proposed, but coupling of the two geological events has not been well illustrated, hindering our understanding of tectonic evolution of central Asia. In order to constrain age of initial closure of the MOO in its western segment and formation of the Tuva‐Mongol Orocline, we performed paleomagnetic studies on the Late Triassic clastic rocks in the Amuria Block (AMB; 17 sites) and the Tarvagatay Block (TVB; 10 sites) of the western Mongolian blocks (WMB) on both sides of the Mongol‐Okhotsk Suture. Rock magnetic investigations show hematite and magnetite as main magnetic carriers of the characteristic remanent magnetization (ChRM). The ChRM directions from both regions pass fold and/or reversal tests and can be considered as primary remanent magnetization. Combining the overlapped new paleomagnetic poles (AMB: λ/φ = 70.4°N/233.8°E, A95 = 4.6°; TVB: λ/φ = 70.5°N/248.2°E, A95 = 9.0°) with geological evidence, we propose that the bending of the WMB following its collision with the Siberia Craton resulted in the Late Triassic closure of the MOO in its western segment, and initiated the formation of the Tuva‐Mongol Orocline.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3