Late Cretaceous‐Early Paleogene Extensional Ancestry of the Harcuvar and Buckskin‐Rawhide Metamorphic Core Complexes, Western Arizona

Author:

Wong Martin S.1ORCID,Singleton John S.2,Seymour Nikki M.23,Gans Phillip B.4ORCID,Wrobel Alexander J.15

Affiliation:

1. Department of Earth and Environmental Geosciences Colgate University Hamilton NY USA

2. Department of Geosciences Colorado State University Fort Collins CO USA

3. Now at Department of Geology Occidental College Los Angeles CA USA

4. Department of Earth Science University of California Santa Barbara CA USA

5. Now at Department of Earth Science University of California Santa Barbara CA USA

Abstract

AbstractMetamorphic core complexes in the western North American Cordillera are commonly interpreted as the result of a single phase of large‐magnitude extension during the middle to late Cenozoic. We present evidence that mylonitic shear zones in the Harcuvar and Buckskin‐Rawhide core complexes in west‐central Arizona also accommodated an earlier phase of extension during the Late Cretaceous to early Paleocene. Microstructural data indicate substantial top‐NE mylonitization occurred at amphibolite‐facies, and40Ar/39Ar thermochronology documents post‐tectonic footwall cooling to <500°C by the Paleocene to mid‐Eocene. Amphibolite‐facies mylonites are spatially associated with voluminous and variably deformed footwall leucogranites that were emplaced from ca. 74–64 Ma, and a late kinematic ca. 63 Ma dike indicates this phase of mylonitization had waned by the early Paleocene. Reconstruction of the footwall architecture indicates that this latest Cretaceous—early Paleocene deformation occurred within a NE‐dipping extensional shear zone. The leucogranites were likely the result of crustal melting due to orogenic thickening, consistent with a model whereby crustal heating triggered gravitational collapse of overthickened crust. Other tectonic processes, such as the Laramide underplating of Orocopia Schist or mantle delamination, may have also contributed to this episode of orogenic extension. Miocene large‐magnitude extension was superimposed on this older shear zone and had similar kinematics, suggesting that the location and geometry of Miocene extension was strongly influenced by tectonic inheritance. We speculate that other Cordilleran core complexes also experienced a more complex and polyphase extensional history than previously recognized, but in many cases the evidence may be obscured by later Miocene overprinting.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3