Erosion‐Driven Isostatic Flow and Crustal Diapirism: Analytical and Numerical Models With Implications for the Evolution of the Eastern Himalayan Syntaxis, Southern Tibet

Author:

Yang Jiaming1ORCID,Cao Wenrong1ORCID,Yuan Xiaoping2ORCID,Yang Jianfeng3ORCID

Affiliation:

1. Department of Geological Sciences and Engineering University of Nevada Reno NV USA

2. Hubei Key Laboratory of Critical Zone Evolution School of Earth Sciences China University of Geosciences Wuhan China

3. State Key Laboratory of Lithospheric Evolution Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

Abstract

AbstractThe Eastern Himalayan Syntaxis (EHS) is one of the fastest exhuming regions on Earth since ∼10 Ma, and the mechanism of its fast exhumation is under debate. Different from many other studies based on tectonics‐driven models, we performed analytical analysis and numerical simulations to investigate an erosion‐driven system. Our results show that fast and focused surface erosion alone is able to exhume the lower crust on the timescale of ∼10 Myr. This process leads to the formation of a domal structure, an elevated geothermal gradient, rapid cooling of crustal rocks, and decompression melting in the lower crust. In the upper‐mid crust, the uplift of crustal rocks is caused by isostatic flow driven by pressure gradient, whose rate is limited by the driving erosional forcing. In the mid‐lower crust where decompression melting occurs, rocks entrained in a buoyant diapir experience fast uplift rate exceeding the erosional forcing. Our erosion‐driven model demonstrates an intricate coupling between surface erosion and crustal processes. Positive feedback between surface erosion and rock uplift is possible under certain conditions and crustal diapirism plays a key role in the feedback. Our study shows that both isostatic and diapiric flows play important roles in the uplift and exhumation of crustal rocks in the EHS. We highlight that erosion‐driven crustal diapirism can be one of the missing pieces explaining the evolution of the Eastern Himalayan Syntaxis.

Funder

National Science Foundation

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3