Evidence of Strain Accumulation and Coupling Variation in the Himachal Region of NW Himalaya From Short Term Geodetic Measurements

Author:

Kumar Prabhat1ORCID,Malik Javed N.1ORCID,Gahalaut Vineet K.2ORCID,Yadav Rajeev K.2ORCID,Singh Gurvinder3ORCID

Affiliation:

1. Department of Earth Sciences Indian Institute of Technology Kanpur Kanpur Uttar Pradesh India

2. CSIR‐National Geophysical Research Institute Hyderabad Telangana India

3. Centre of Advanced Study in Geology Panjab University Chandigarh India

Abstract

AbstractHimachal region of Northwest Himalaya exhibits the widest structural re‐entrant in Kangra region and significant strain partitioning along the frontal and hinterland out‐of‐sequence faults. We report results of continuous GPS measurements from 10 new sites in the region and analyze them along with the previously published results to constrain the ongoing arc‐normal and arc‐parallel convergence rates at 16.5 ± 1.1 and 4–5 mm/yr respectively. Thus, the ongoing convergence is oblique by 15°–20°. The Main Himalayan Thrust (MHT) is strongly coupled up to ∼100 km from the Main Frontal Thrust but displays significant variation in coupling in the transition zone across the Kangra re‐entrant and the adjoining western salient. Joint analysis of the coupling variation, the geologically inferred MHT geometry variations and the local topographic anomaly pattern strongly suggest the possibility of a potentially active, strain accumulating segment of MBT along the southern margin of Dhauladhar ranges in Western Himachal region, which is also proposed to be influencing the long‐term topographic growth in the region. Although a general agreement is observed between the long‐term shortening rates along the active faults and the estimated geodetic convergence in this region, the ensuing discussion highlights their complex relationship in terms of temporal and spatial variability in the fault activity and elastic‐inelastic deformation. We use the fault orientation and the estimated convergence rate to geometrically constrain a mean dextral slip‐rate of 4.4–5.7 mm/yr along a recently discovered Khetpurali‐Taksal fault, which is proposed to partition the majority of ongoing arc‐parallel deformation along it.

Funder

Ministry of Earth Sciences

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3