Quantitative Analysis of Faulting in the Danakil Depression Rift of Afar: The Importance of Faulting in the Final Stages of Magma‐Rich Rifting

Author:

Hurman Gareth L.1ORCID,Keir Derek12ORCID,Bull Jonathan M.1ORCID,McNeill Lisa C.1,Booth Adam D.3ORCID,Bastow Ian D.4ORCID

Affiliation:

1. School of Ocean and Earth Science University of Southampton Southampton UK

2. Dipartimento di Scienze della Terra Università degli Studi di Firenze Florence Italy

3. School of Earth and Environment University of Leeds Leeds UK

4. Department of Earth Science and Engineering Imperial College London London UK

Abstract

AbstractMagmatic intrusion and faulting both accommodate crustal extension in magma‐rich rifts. However, quantitative constraints on the contribution of faulting to total extension and along‐rift variations of faulting during the final stages of break‐up are lacking. We targeted the Danakil Depression (Afar, Ethiopia) to conduct a quantitative, high‐resolution study of fault activity and interaction in a magma‐rich rift near break‐up. Quantitative analysis of >500 rift axis faults, identified using remote sensing data (satellite imagery, DEMs), shows an increase in fault density, length and connectivity away from magmatic segments. Kinematic and earthquake focal mechanism data demonstrate a transition from transtensional opening in the northern and central sub‐regions of the rift to oblique opening in the southern Giulietti Plain and Tat‐Ali sub‐regions. Oblique opening is attributed to the along‐axis step between the Erta‐Ale and Harak sub‐regions. Integration of seismic reflection and borehole data with the mapped faults shows that extension is primarily accommodated by magmatism within the rift center, with faulting more significant toward the ends of the rift. ∼30% of crustal extension is accommodated by axial faulting in areas of low magmatism, highlighting the importance of faulting even in the final stages of magma‐rich rifting. Comparing our findings with spreading ridge morphology and structure, relevant due to the rift maturity and extensive magmatism, we conclude that the Danakil Depression is in a transitional stage between continental rifting and seafloor spreading. Spatial changes in the importance of faulting and magmatism in accommodating extension, alongside rift morphology, resemble the relationships observed along spreading ridges.

Funder

Natural Environment Research Council

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3