Efficient GPU Power Management through Advanced Framework Utilizing Optimization Algorithms

Author:

Rehman RameshaORCID,Chishti Mashood Ul HaqORCID,Yamin HamzaORCID

Abstract

The rapid rise in power usage by GPUs due to advances in machine and deep learning has led to an increase in power consumption of GPUs in Deep Learning workloads. To address this issue, a novel research project focuses on integrating Particle Swarm Optimization into a model training optimization framework to effectively reduce GPU power consumption during machine learning and deep learning training workloads. By utilizing the Particle Swarm Optimization (PSO)\protect\hyperlink{b1}{{[}1{]}} algorithm within the proposed framework, we show the effectiveness of PSO in creating a more efficient power management strategy while also maintaining the performance. Upon evaluation of the proposed framework, it shows a reduction of 15.8\% to 75.8\% in power consumption across multiple workloads, with little to no performance loss.

Publisher

Moldova State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3