A Neural Attention-Based Encoder-Decoder Approach for English to Bangla Translation

Author:

Al Shiam Abdullah1ORCID,Redwan Sadi Md.2ORCID,Kabir Md. Humaun3ORCID,Shin JungpilORCID

Affiliation:

1. Sheikh Hasina University

2. University of Rajshahi, Bangladesh

3. Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Bangladesh

Abstract

Machine translation (MT) is the process of translating text from one language to another using bilingual data sets and grammatical rules. Recent works in the field of MT have popularized sequence-to-sequence models leveraging neural attention and deep learning. The success of neural attention models is yet to be construed into a robust framework for automated English-to-Bangla translation due to a lack of a comprehensive dataset that encompasses the diverse vocabulary of the Bangla language. In this study, we have proposed an English-to-Bangla MT system using an encoder-decoder attention model using the CCMatrix corpus. Our method shows that this model can outperform traditional SMT and RBMT models with a Bilingual Evaluation Understudy (BLEU) score of 15.68 despite being constrained by the limited vocabulary of the corpus. We hypothesize that this model can be used successfully for state-of-the-art machine translation with a more diverse and accurate dataset. This work can be extended further to incorporate several newer datasets using transfer learning techniques.

Publisher

Vladimir Andrunachievici Institute of Mathematics and Computer Science

Subject

Artificial Intelligence,Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Networks and Communications,Computer Science Applications,Modeling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis System of English Translation on Cloud Platform Based on Artificial Intelligence;2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3