Determining the Reliability of Personal Masks with Convolutional Neural Networks

Author:

Ak Özgür Boran1ORCID,Kuruöz Ertan1ORCID,Ak Ayça2ORCID

Affiliation:

1. Prof. Dr. Şaban Teoman Duralı Bilim ve Sanat Merkezi

2. Marmara Üniversitesi

Abstract

During the COVID-19 pandemic, which is a worldwide disaster, it has been proven that one of the most important methods to struggle the transmission of such diseases is the use of face masks. Due to this pandemic, the use of masks has become mandatory in Turkey and in many other countries. Since some surgical masks do not comply with the standards, their protective properties are low. The aim of this study is to determine the reliability of personal masks with Convolutional Neural Networks (CNNs). For this purpose, first, a mask data set consisting of 2424 images was created. Subsequently, deep learning and convolutional neural networks were employed to differentiate between meltblown surgical masks and non-meltblown surgical masks without protective features. The masks under investigation in this study are divided into 5 classes: fabric mask, meltblown surgical mask, meltblown surgical mask, respiratory protective mask and valve mask. Classification of these mask images was carried out using various models, including 4-Layer CNN, 8-Layer CNN, ResNet-50, DenseNet-121, EfficientNet-B3, VGG-16, MobileNet, NasNetMobile, and Xception. The highest accuracy, 98%, was achieved with the Xception network.

Publisher

Afet ve Risk Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3