Author:
Sunjun Lee Sunjun Lee,Sunjun Lee Yonggu Shin,Yonggu Shin Minseong Choi,Minseong Choi Haehyun Cho,Haehyun Cho Jeong Hyun Yi
Abstract
<p>A lot of the recently reported malware is equipped with the anti-analysis techniques (e.g., anti-emulation, anti-debugging, etc.) for preventing from being the analyzed, which can delay detection and make malware alive for a longer period. Therefore, it is of the great importance of developing automated approaches to defeat such anti-analysis techniques so that we can handle and effectively mitigate numerous malware. In this paper, by analyzing 1,535 malicious applications, we found that 18.31% of them equipped with anti-analysis techniques. Next, we propose a novel, dynamic analyzer, named DOOLDA, for automatically invalidating anti-analysis techniques through dynamic instrumentation. DOOLDA monitors executions of Android applications’ entire code layers (i.e., bytecode and native code). Based on monitoring results, DOOLDA finds the code related to anti-analysis techniques and invalidates the anti-analysis techniques by instrumenting it. To demonstrate the effectiveness of DOOLDA, we show that it can invalidate all known anti-analysis techniques. Also, we compare DOOLDA with other dynamic analyzers.</p>
<p> </p>
Publisher
Journal of Internet Technology