S2F-YOLO: An Optimized Object Detection Technique for Improving Fish Classification

Author:

Feng Wang Feng Wang,Feng Wang Jing Zheng,Jing Zheng Jiawei Zeng,Jiawei Zeng Xincong Zhong,Xincong Zhong Zhao Li

Abstract

<p>The current emergence of deep learning has enabled state-of-the-art approaches to achieve a major breakthrough in various fields such as object detection. However, the popular object detection algorithms like YOLOv3, YOLOv4 and YOLOv5 are computationally inefficient and need to consume a lot of computing resources. The experimental results on our fish datasets show that YOLOv5x has a great performance at accuracy which the best mean average precision (mAP) can reach 90.07% and YOLOv5s is conspicuous in recognition speed compared to other models. In this paper, a lighter object detection model based on YOLOv5(Referred to as S2F-YOLO) is proposed to overcome these deficiencies. Under the premise of ensuring a small loss of accuracy, the object recognition speed is greatly accelerated. The S2F-YOLO is applied to commercial fish species detection and the other popular algorithms comparison, we obtained incredible results when the mAP is 2.24% lower than that of YOLOv5x, the FPS reaches 216M, which is nearly half faster than YOLOv5s. When compared with other detectors, our algorithm also shows better overall performance, which is more suitable for actual applications.</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3