A Memory-Aware Spark Cache Replacement Strategy

Author:

Jingyu Zhang Jingyu Zhang,Jingyu Zhang Ruihan Zhang,Ruihan Zhang Osama Alfarraj,Osama Alfarraj Amr Tolba,Amr Tolba Gwang-Jun Kim

Abstract

<p>Spark is currently the most widely used distributed computing framework, and its key data abstraction concept, Resilient Distributed Dataset (RDD), brings significant performance improvements in big data computing. In application scenarios, Spark jobs often need to replace RDDs due to insufficient memory. Spark uses the Least Recently Used (LRU) algorithm by default as the cache replacement strategy. This algorithm only considers the most recent use time of RDDs as the replacement basis. This characteristic may cause the RDDs that need to be reused to be evicted when performing cache replacement, resulting in a decrease in Spark performance. In response to the above problems, this paper proposes a memory-aware Spark cache replacement strategy, which comprehensively considers the cluster memory usage, RDD size, RDD dependencies, usage times and other information when performing cache replacement and selects the RDDs to be evicted. Furthermore, this paper designs extensive corresponding experiments to test and analyze the performance of the memory-aware Spark cache replacement strategy. The experimental data show that the proposed strategy can improve the performance by up to 13% compared with the LRU algorithm in different scenarios.</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

Computer Networks and Communications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3