Automatic Path Planning for Spraying Drones Based on Deep Q-Learning

Author:

Ya-Yu Huang Ya-Yu Huang,Ya-Yu Huang Zi-Wen Li,Zi-Wen Li Chun-Hao Yang,Chun-Hao Yang Yueh-Min Huang

Abstract

<p>The reduction of the agricultural workforce due to the rapid development of technology has resulted in labor shortages. Agricultural mechanization, such as drone use for pesticide spraying, can solve this problem. However, the terrain, culture, and operational limitations in mountainous orchards in Taiwan make pesticide spraying challenging. By combining reinforcement learning with deep neural networks, we propose to train drones to avoid obstacles and find optimal paths for pesticide spraying that reduce operational difficulties, pesticide costs, and battery consumption. We experimented with different reward mechanisms, neural network depths, flight direction granularities, and environments to devise a plan suitable for sloping orchards. Reinforcement learning is more effective than traditional algorithms for solving path planning in complex environments.</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

Computer Networks and Communications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence Applied to Drone Control: A State of the Art;Drones;2024-07-03

2. The Role of Machine Learning in UAV-Assisted Communication;Advances in Computational Intelligence and Robotics;2024-01-17

3. AI Emmbedded in Drone Control;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3