A Hybrid Algorithm for Feature Selection and Classification
Author:
B. R. Sathish B. R. Sathish,B. R. Sathish Radha Senthilkumar
Abstract
<p>With a recent spread of intelligent information systems, massive data collections with a lot of repeated and unintentional, unwanted interference oriented data are gathered and a huge feature set are being operated. Higher dimensional inputs, on the other hand, contain more correlated variables, which might have a negative impact on model performance. In our model a Hybrid method of selecting feature was developed by combining Binary Gravitational Search Particle Swarm Optimization (HBGSPSO) method with an Enhanced Convolution Neural Network Bidirectional Long Short Term Memory (ECNN-BiLSTM). In our proposed system, the Bidirectional Long Short Term Memory (BiLSTM) is introduced which extracts the hidden dynamic data and utilizes the memory cells to think of long-term historical data after the convolution process. In this paper, thirteen well-defined datasets are used from the machine learning database of UC Irvine to evaluate the efficiency of the proposed system. The experiments are conducted using K Nearest Neighbor (KNN) and Decision Tree (DT) which are used as classifiers to evaluate the outcome of selected features. The outcomes are contrasted and compared with the bio-enlivened calculations like Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), and Optimization protocol using Particle Swarm Optimization (PSO).</p>
<p> </p>
Publisher
Angle Publishing Co., Ltd.
Subject
Computer Networks and Communications,Software