Machine Learning Approaches to Malicious PowerShell Scripts Detection and Feature Combination Analysis

Author:

Hsiang-Hua Hung Hsiang-Hua Hung,Hsiang-Hua Hung Jiann-Liang Chen,Jiann-Liang Chen Yi-Wei Ma

Abstract

<p>With advances in communication technology, modern society relies more than ever on the Internet and various user-friendly digital tools. It provides access to and enables the manipulation of files, trips, and the Windows API. Attackers frequently use various obfuscation techniques PowerShell scripts to avoid detection by anti-virus software. Their doing so can significantly reduce the readability of the script. This work statically analyzes PowerShell scripts. Thirty-three features that were based on the script&rsquo;s keywords, format, and string combinations were used herein to determine the behavioral intent of the script. Ones are characteristic-based features that are obtained by calculation; the others are behavior-based features that determine the execution function of behavior using keywords and instructions. Behavior-based features can be divided into positive behavior-based features, neutral behavior-based features, and negative behavior-based features. These three types of features are enhanced by observing samples and adding keywords. The other type of characteristic-based feature is introduced into the formula from other studies in this work. The XGBoost model was used to evaluate the importance of the features that are proposed in this study and to identify the combination of features that contributed most to the detection of PowerShell scripts. The final model with the combined features is found to exhibit the best performance. The model has 99.27% accuracy when applied to the validation dataset. The results clearly indicate that the proposed malicious PowerShell script detection model outperforms previously developed models.</p> <p>&nbsp;</p>

Publisher

Journal of Internet Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3