TA-Sum: The Extractive Summarization Research Based on Topic Information

Author:

Fang Xie Fang Xie,Fang Xie Hao Li,Hao Li Beiye Zhang,Beiye Zhang Jianan He,Jianan He Xincong Zhong

Abstract

<p>Text summarization is divided into extractive summarization and abstractive summarization. The extractive summarization technology aims to extract some main phrases and sentences from the original text to form a short summary for people to read quickly. However, extractive summarization is faced with problems such as poor sentence coherence and incomplete information, which makes it difficult to screen out important sentences from the source text. DNN (Deep Neural Network) is widely used for text summarization task. This paper proposes a TA-Sum model based on the neural topic model. Introducing the topic information can help people understand the relevant main content of source text quickly. We obtain the topic information using the neural topic model and implement the attention mechanism to fuse the topic information with the text representation, which improves the semantic integrity and completeness of the summary. The experimental results on the large-scale English data sets CNN/Daily mail are improved by 0.37%, 0.11%, and 0.17% respectively compared with BertSum, which demonstrates the effectiveness of our method.</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3