Using Improved YOLOv5 Model to Detect Volume for Logs in Log Farms

Author:

Xianqi Deng Xianqi Deng,Xianqi Deng Jianping Liu,Jianping Liu Cheng Peng,Cheng Peng Yingfei Wang

Abstract

<p>In this paper, we propose a new computer vision model called SE-YOLOv5-SPD for counting the number of log ends in large wood piles in log farms. This task traditionally requires a lot of manpower and previous computer vision methods struggle to detect logs in low pixels and small objects in images. Our model is based on the YOLOv5 model and incorporates the Squeeze-and-Excitation Networks (SENet) attention module and SPD-Conv (Space-to-Depth Convolution) module to improve accuracy. We also compare the performance of the SE attention module and SPD-Conv module to the CBAM attention module and Focus module using the SE-YOLOv5-SPD model. Results show that the SE-YOLOv5-SPD model can achieve excellent results of 0.652 in mAP50:95, 0.912 in mAP50, 0.968 in Precision, and 0.864 in Recall in a low-resolution environment with interference, which is significantly better than other models. Our findings indicate that the SE-YOLOv5-SPD model is a promising solution for counting the number of log ends in wood piles.</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3