Author:
Yen-Wen Chen Yen-Wen Chen,Yen-Wen Chen Ji-Zheng You
Abstract
<p>Emerging intelligent and highly interactive services result in the mass deployment of internet of things (IoT) devices. They are dominating wireless communication networks compared to human-held devices. Random access performance is one of the most critical issues in providing quick responses to various IoT services. In addition to the anchor carrier, the non-anchor carrier can be flexibly allocated to support the random access procedure in release 14 of the 3rd generation partnership project. However, arranging more non-anchor carriers for the use of random access will squeeze the data transmission bandwidth in a narrowband physical uplink shared channel. In this paper, we propose the prediction-based random access resource allocation (PRARA) scheme to properly allocated the non-anchor carrier by applying reinforcement learning. The simulation results show that the proposed PRARA can improve the random access performance and effectively use the radio resource compared to the rule-based scheme. </p>
<p> </p>
Publisher
Angle Publishing Co., Ltd.
Subject
Computer Networks and Communications,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献