AMS Intrusion Detection Method Based on Improved Generalized Regression Neural Network

Author:

Yuhong Wu Yuhong Wu,Yuhong Wu Xiangdong Hu

Abstract

<p>The smart grid integrates the computer network with the traditional power system and realizes the intelligentization of the power grid. The Advanced Measurement System (AMS) interconnects the power system with the user, realizes the two-way interaction of data and information between the power supplier and the user, and promotes the development of the smart grid. Therefore, the safe operation of AMS is the key to the development of the smart grid. As smart grids and computer networks become more and more closely connected, the number of cyberattacks on AMS continues to increase. Currently, AMS intrusion detection algorithms based on machine learning are constantly being proposed. Machine learning algorithms have better learning and classification capabilities for small sample data, but when faced with a large amount of high-dimensional data information, the learning ability of machine learning algorithms is reduced, and the generalization ability is reduced. To enhance the AMS intrusion detection algorithm, this paper uses a Generalized Regression Neural Network (GRNN) to identify attack behaviors. GRNN has strong non-linear mapping ability, is suitable for unstable data processing with small data characteristics, has good classification and prediction ability, and has been widely used in power grid systems. Aiming at the existing problems, this paper proposes an upgraded generalized regression neural network AMS intrusion detection method DBN-DOA-GRNN. Based on the feature extraction and dimensionality reduction of the data by DBN, GRNN is used for data with less feature information in learning classification. In addition, to improve the detection effect of the method, the Drosophila Optimization Algorithm (DOA) is used to optimize the parameters of GRNN to reduce the influence of random parameters on the detection results, improve the detection accuracy of this method on small-scale sample data, and thereby improve the detection performance of the AMS intrusion detection algorithm. The proposed method archives an accuracy of 87.61%, 3.10% false alarm rate, and 96.9 precision rate.</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3